

R&D SH W WCASE 2021

Technology, Social Impact

CODED DATA REBALANCING

Data Skew and Data Rebalancing in Distributed Systems

Non-uniform distribution of data across storage nodes

Can arise because of

Node additions or removals

Behaviour of the file system

Behaviour of client applications

Leads to

Load imbalance

Increase in task completion time

Stragglers

Remedy: Data Rebalancing

Data Rebalancing

Redistribute data across the available nodes to balance the distribution.

- Rebalancing may be needed at regular intervals
- Communication costs
- Reduction in performance during rebalancing.

Introducing Coded Data Rebalancing

- Exploit data replication for Coded transmissions during rebalancing
- Preserve database structure post rebalancing.

Coded Data Rebalancing : Formal System Model

System Model: Initial database

Figure: An r-balanced distributed database C(r, [K]), where $[K] = \{1, ..., K\}$.

- r : Replication factor
- 'Balanced': each node stores $\lambda = \frac{r}{\kappa}$ fraction of the data

Communication Load of Rebalancing Scheme

Let I_i be the number of bits sent by node i

 $L_{add}(\mathcal{R}'_{\mathcal{C},\mathcal{C}'}) \triangleq \frac{\sum\limits_{i \in [K]} I_i}{\lambda_{add} N}, \quad \text{where } \lambda_{add} = \frac{r}{K+1}.$ $L_{rem}(\mathcal{R}_{k,\mathcal{C},\mathcal{C}_k}) \triangleq \frac{\sum\limits_{i \in [K] \setminus k} I_i}{\lambda N}, \quad \text{where } \lambda_{rem} = \frac{r}{K-1}.$

$$L^*(r) = \inf_{\substack{\mathcal{C}, \{\mathcal{C}_k: k \in [K]\}, \mathcal{C}' \\ \mathcal{C}, \{\mathcal{C}_k: k \in [K]\}, \mathcal{C}'}} \inf_{\substack{\mathcal{R}_{k, \mathcal{C}, \mathcal{C}_k}, \mathcal{R}'_{\mathcal{C}, \mathcal{C}'} \\ \mathcal{R}_{k, \mathcal{C}, \mathcal{C}_k}}} \max_{\substack{k \in [K]}} L_{rem}(\mathcal{R}_{k, \mathcal{C}, \mathcal{C}_k}) + L_{add}(\mathcal{R}'_{\mathcal{C}, \mathcal{C}'})$$

Main Contribution

Converse $L^* \ge \frac{1}{r-1} + 1$ (node removal + node addition).

Achievable Scheme

- Achieves optimal communication load (whereas $L_{uncoded} = 1 + 1$)
- Optimality for any sequence of node removals or additions
- Structural invariance: Maintains the structure of the database across node removal/addition.

Achievability

Achievable Scheme : Family of *r*-balanced Databases

- Divide the data W into K! subfiles.
- Index set of subfiles

$$S([K], K-r) \triangleq \{i = (i_1, \ldots, i_{K-r}) : \{i_1, \ldots, i_{K-r}\} \subseteq [K]\}$$

r-balanced Distributed Database

For each $i = (i_1, ..., i_{K-r}) \in S([K], K - r)$

 W_i is stored in $\{j_1, \ldots, j_r\}$, where $\{j_1, \ldots, j_r\} = [K] \setminus i$.

Easy to check this is r-balanced database. We denote this as C(r, [K])

Illustration of Rebalancing and Structural Invariance

Achievable Scheme: Node Addition

- Starting database C(r, [K])
- Subfile indices: S([K], K r)
- Target Database C(r, [K+1])(keep r replication, balance node storage)
- Subfile indices S([K+1], K+1-r)

For each subfile $\mathbf{i} = (i_1, \dots, i_{K-r}) \in S([K], K-r)$ (where $\{j_1, \dots, j_r\} = [K] \setminus \mathbf{i}$) • Split W_i into K+1 subfiles, re-indexed as

$$(j_1, i_1, \dots, i_{K-r}), (j_2, i_1, \dots, i_{K-r}), \dots, (j_r, i_1, \dots, i_{K-r})$$

 $(K+1, i_1, \dots, i_{K-r}), (i_1, K+1, i_2, \dots, i_{K-r}), \dots, (i_1, \dots, i_{K-r}, K+1)$

- Note that these new indices are in S([K+1], K+1-r).
- Node j_l forwards $(j_l, i_1, \dots, i_{K-r})$ to K+1, and then deletes it.

K = 5, r = 3, with database $\mathcal{C}([5], 3)$. Node 6 is added.

Example

• Subfile Splitting: $W_{[2\ 3]}$ is split into K+1=6 chunks at $\{1,4,5\}$ as

$$W_{[1\ 2\ 3]}, W_{[4\ 2\ 3]}, W_{[5\ 2\ 3]}, W_{[6\ 2\ 3]}, W_{[2\ 6\ 3]}, W_{[2\ 3\ 6]}$$

- Transmissions and Deletion:
- Node 1 transfers W_[1 2 3] to Node 6 and deletes it. Node 4 transfers W_[4 2 3] to Node 6 and deletes it.
- Node 5 transfers $W_{[5\ 2\ 3]}$ to Node 6 and deletes it.

Same is done for each subfile

Final database on 6 nodes: C([6], 3).

Achievable Scheme : Node $k \in [K]$ Removal

- Starting database C(r, [K])
- Subfile indices: S([K], K r)
- Target Database C(r, K'), where \mathcal{K}' denotes the survivor set $[K] \setminus k$.
- Rebalance to reinstate replication factor of subfiles in node k, and balance storage.
- Subfile indices S' = S(K', K 1 r)

For subfile $i \in S'$ (where $\{j_1, \ldots, j_r\} = \mathcal{K}' \setminus i$))

Consider the r subfile indices,

$$(j_1,i), (j_2,i), \ldots, (j_r,i)$$

- Note that these indices are in S([K], K − r), representing existing subfiles
- These have replication factor reduced to r − 1, must be reinstated to r

Achievable Scheme : Node $k \in [K]$ Removal (Step 1 -Grouping and Transmissions)

For each $\mathbf{i} \in S'$ (where $\{j_1, \ldots, j_r\} = \mathcal{K}' \setminus \mathbf{i}$))

- Subfile Grouping: Consider the r subfiles indices,
 - $(j_1,i), (j_2,i), \ldots, (j_r,i)$
- Only subfile $W_{(i_t,i_t)}$ is unavailable at j_l , available at $\{j_1,\ldots,j_r\}\setminus j_l$. • Subfile Exchange via Coded Transmissions: Each ji does one coded
- transmission of size $\frac{1}{r-1}$ of that of a subfile

 $W'_{(j_m,i)}$, (for example, $W^1_{(j_r,i)} \oplus \ldots \oplus W^1_{(j_r,i)}$ by node j_1)

where $W'_{(i_m,i)}$ represents one chunk of (r-1) chunks of subfile $W_{(i_m,i)}$.

• After these r transmissions, (j_l, i) is available at node j_l also.

Achievable Scheme : Node $k \in [K]$ Removal (Step 2 -Recombining)

For each $i \in S'$ (where $\{j_1, \ldots, j_r\} = \mathcal{K}' \setminus i$)) • Each node $\{j_1, \ldots, j_r\}$ has following subfiles

> $(j_1, i_1, \ldots, i_{K-r-1}), (j_2, i_1, \ldots, i_{K-r-1}), \ldots, (j_r, i_1, \ldots, i_{K-r-1})$ $(k, i_1, \ldots, i_{K-r-1}), (i_1, k, i_2, \ldots, i_{K-r-1}), \ldots, (i_1, \ldots, i_{K-r-1}, k)$

Combine the above K subfiles and create a new (larger) subfile with index

Example

K = 5, r = 3, with database $\mathcal{C}([5], 3)$.

• Subfile Grouping: Form a group with $i = [3] \in S([4], 1)$

 $W_{[1\ 3]}, W_{[2\ 3]}, W_{[4\ 3]}$

• Subfile Exchange through Coded transmissions

• Node 1 transmits $W^1_{[2\ 3]} \oplus W^1_{[4\ 3]}$

• Node 2 broadcasts $W^2_{[1\ 3]}\oplus W^2_{[4\ 3]}$ • Node 4 broadcasts $W_{[1\ 3]}^4\oplus W_{[2\ 3]}^4$

• Combine the following at nodes $\{1,2,4\}$, and relabel as $W_{[3]}$

 $W_{[1\ 3]}, W_{[2\ 3]}, W_{[4\ 3]},$ $W_{[5\ 3]}, W_{[3\ 5]}$

Same is done for each $i \in S([4], 1)$ Final database on 4 nodes: $\mathcal{C}([4], 3)$