INTERNATIONAL INSTITUTE OF
INFORMATION TECHNOLOGY

HYDERABAD

Technology, Social Impact

R&D SHEWCASE 2021

@ Data Skew and Data Rebalancing in Distributed Systems

Data Skew

Non-uniform distribution of data across storage nodes

|
)

Can arise because of Leads to

@ Node additions or removals @ Load imbalance
@ Behaviour of client applications o Stragglers

@ Behaviour of the file system

Remedy : Data Rebalancing

@ Increase in task completion time

Data Rebalancing

Redistribute data across the available nodes to balance the distribution.

@ Rebalancing may be needed at regular intervals
@ Communication costs

@ Reduction in performance during rebalancing.

Introducing Coded Data Rebalancing

@ Exploit data replication for Coded transmissions during rebalancing

@ Preserve database structure post rebalancing.

© Coded Data Rebalancing : Formal System Model

System Model: Initial database

I Data File W (N subfiles)

Store each bit of W in exactly » out of K nodes

- ¥ -

Node | Nade 2 Node K
t
4\.\ al v
subfiles| C1 Cy — Cx
t
Bus link

Figure: An r-balanced distributed database C(r, [K]), where [K] = {1

@ r : Replication factor

@ '‘Balanced': each node stores A = # fraction of the data.

Dr. Prasad Krishnan

CODED DATA REBALANCING

Rebalancing Scheme for Node Addition Ry, ., ! Rebalancing Scheme for Node k € [K] Removal, Ric.c,

J
C(r,[K]) : : r-balanced database on [K] C(r,[K]) : r-balanced database on [K]
|
J 4
Node K + 1 is added to the database. Node k € [K] is removed from the database (k = K in this ex.).
i
Cy C-z e Cl\’ E i 4 Cg e Cr-1 E C K E
beapeed T
Bus link I I
6 ae s Ck-
Cl C2 ... C", 1 CZ 1

“ I

Cy C, ... Ck-1

¢l e Cx G o ... |
1
Ci| [G] -+ |Ck| |Cka G| |G| ~ [Cka

C'(r,[K 4 1]) : r-balanced database on [K + 1] Cu(r, [KI\K): r-balanced database on [K]\k

Communication Load of Rebalancing Scheme

Let /; be the number of bits sent by node i.

Node addition: Node Removal:

> ¥
2,)2 i€k e Lem(Riccce) 2 SENE | where A = ——.
L:u‘d(l\x"‘\") — \MGN. where Aygq = K+ 1 ,'c.n(Vk,C() N where Aem K_1
> e
)= inf inf max Lem(Rice,) + Ladd(Re o)
CACke[K]}C' Ruc.ep-RL .0 kE ! }

Main Contribution

Converse

(node removal + node addition).

Achievable Scheme
@ Achieves optimal communication load (whereas Lpcoqed = 1 + 1)
@ Optimality for any sequence of node removals or additions

@ Structural invariance: Maintains the structure of the database across node
removal/addition.

© Achievability

Achievable Scheme : Family of r-balanced Databases

@ Divide the data W into ’f—,' subfiles.
@ Index set of subfiles

r-balanced Distributed Database
For each i = (iy,....ik_,) € S([K],K - r)

Wi is stored in {ji,....j;}, where {j,...,jr} = [K]\i.

Easy to check this is r-balanced database. We denote this as C(r, [K])

[llustration of Rebalancing and Structural Invariance

Number of nodes r+1 r+2 K-1 K K+1
in the system nodes nodes LR nodes nodes
nodes
Node Addition
Distributed = Ny e = -
Database |('(r. [r+1]) |(’<vv-(r-2]1| .« e |(,(,-,[1\ -1 >| C(r.[K]) | lur. K+ 1})| o
> > . » 73 .
""" Node Removal

Achievable Scheme : Node Addition

o Starting database C(r, [K])
o Subfile indices: S([K].K —r)

o Target Database C(r. [K + 1])
(keep r replication, balance node
storage)

@ Subfile indices S([K +1],K+1—r)

For each subfile i = (i,..., ik—r) € S([K), K — r) (where {ji,..., Jr} = [K]\P)
o Split W; into K + 1 subfiles, re-indexed as

thikiosnie s (@bnote s s ek

@ Note that these new indices are in S([K + 1]. K +1—r).
o Node j; forwards (ji, i, ..., ix_,) to K+ 1, and then deletes it.

Example

K = 5.r = 3, with database C([5], 3).
Node 6 is added.

@ Subfile Splitting: W, 3 is split into K + 1 = 6 chunks at {1,4,5} as

Wit 2 33s Wia 2 33, Ws 2 3.
Wis 2 33 Wz 6 33 W2 3 g

@ Transmissions and Deletion:

@ Node 1 transfers W; » 3 to Node 6 and deletes it.
o Node 4 transfers W, > 3) to Node 6 and deletes it.
e Node 5 transfers W , 3 to Node 6 and deletes it.

Same is done for each subfile.

Final database on 6 nodes: C([6]. 3).

Achievable Scheme : Node k € [K] Removal

e Starting database C(r, [K])
@ Subfile indices: S([K].K —r)

o Target Database C(r.K'), where
K' denotes the survivor set [K]\k.

@ Rebalance to reinstate replication
factor of subfiles in node k, and
balance storage.

@ Subfile indices S' = S(K'.K —1—1r)

For subfile i € S" (where {ji,.... Jr} = KN\i))
o Consider the r subfile indices,
(f.8)s (B0); ovs (rod)

@ Note that these indices are in S([K]. K — r), representing existing subfiles
that were stored in node k.

@ These have replication factor reduced to r — 1, must be reinstated to r.

Achievable Scheme : Node k € [K] Removal (Step 1 -
Grouping and Transmissions)

For each i € S’ (where {j;...., Jo } = K'\i))

@ Subfile Grouping: Consider the r subfiles indices,

Gud)e Gaod)s oo s Gind)

@ Only subfile W ;) is unavailable at j;, available at {j,..., Jr P

@ Subfile Exchange via Coded Transmissions: Each j; does one coded

transmission of size -2 of that of a subfile

P W, . .(for example. W, ;@ ..

me[r]\!

LB W(j-'_,-)by node ji)

where W, . represents one chunk of (r — 1) chunks of subfile W; ;.

o After these r transmissions, (j;. i) is available at node j; also.

Achievable Scheme : Node k € [K] Removal (Step 2 -
Recombining)

For each i € §' (where {j1,...,j.} = K'\i))
o Each node {jj,..., Jr} has following subfiles

(jl.fl fK—r—I)- (jg.lll iK_,_1). ces s (_]',.I‘l '.K—r—l)

(r'(.l'l I'Kk,--l). (l.l.r[(.l'z iK»r»l)- ey (il I'K»rul.k)

o Combine the above K subfiles and create a new (larger) subfile with index
ie§.

Example

K =5, r = 3, with database C([5], 3).
Node 5 is removed.
@ Subfile Grouping: Form a group with i = [3] € 5([4],1)

Wit 31, W2 31, Wi 3

@ Subfile Exchange through Coded transmissions
o Node 1 transmits W[lg 31 ® Wli 3
o Node 2 broadcasts W[21 3 ® VV[?, 3
o Node 4 broadcasts Wi 5 & W 5.

o Combine the following at nodes {1,2,4}, and relabel as W/
Wi 31, W2 3, Wia 3,
Wis 31, W3 5

Same is done for each i € S([4],1).
Final database on 4 nodes: C([4], 3).

Research Center Name: SPCRC

https://arxiv.org/abs/2001.04939

