

DECODING OF REED-MULLER CODES

ABSTRACT

Reed-Muller Codes are among the oldest known error-correcting codes. Various algorithms for the decoding of Reed-Muller Codes have been proposed. Algorithms based on recursive projection, puncturing and syndrome decoding have been discussed below. These algorithms exploit the large symmetry group of the Reed-Muller Codes for efficiently decoding them.

DECODING ALGORITHMS

The Reed-Muller code with parameters q, m, r, denoted RM(q, m, r), is the set of evaluations of all m-variate polynomials in $F_n[X_1, \ldots, X_m]$ of total degree at most r and individual degree at most q – 1 over all points in F_{a} .

- **1.** Recursive Projection-Aggregation (RPA)
- The RPA algorithm itself consists of two steps which are performed recursively: one is a projection step and the second is an aggregation step.
- In the projection step, the noisy version of a codeword of RM (m, r) is projected onto $2^m - 1$ distinct one dimensional subspaces of the vector space F_2^{m} .
- After projection, the resultant vector is a corrupted version of a codeword of RM (m - 1, r - 1) code.

- (Fast Hadamard Transform) decoder.

Recursive Puncturing-Aggregation (RXA)

- RM codes.
- The algorithm consists of two steps which are performed recursively : One is the puncturing step and the second is an aggregation step which is similar to that of RPA.
- In the puncturing step, the noisy version of a codeword of RM(m, r) is punctured to obtain $2(2^{m}-1)$ vectors using the $(2^{m}-1)$ permutations from the automorphism group.
- After puncturing, the resultant vector is a codeword of RM(m-1, r) code. The base code here is RM(r+2, r) which is decoded using FHT type decoder.

Authors: Rasagna Ch, Harshithanjani A, Dr Lalitha Vadlamani

R&D SH WCASE 2021

Technology, Social Impact

The procedure of projection is repeated until first order RM code is obtained. The first order RM code is decoded using a FHT

• The aggregation step in each iteration of the recursion involves obtaining estimate of each coordinate of the codeword by taking a majority vote based on the estimated projected codewords. • The computational complexity of the algorithm is of the order of n'logn and performs well on low-order RM codes.

To extend the above idea to high-rate RM codes, RXA algorithm was proposed which involves construction of factor graphs for

3. Efficient ML Decoding of RM(m, m-3) codes:

- In this decoding algorithm, code symmetry is used to reduce the size of the syndrome table of RM(m, m-3) code.
- There are two main steps in the algorithm: First step is to develop a reduced syndrome table.
- The second step is to develop an algorithm to find an affine transformation for a given received vector so that, the syndrome of the transformed received vector is present in the reduced syndrome table.
- The computational complexity of the algorithm is of the order of m³.

WORK IN PROGRESS..

Extending the idea to decode RM(m, m-4) codes:

We are currently working on extending the above discussed symmetry based syndrome decoding approach to decode RM(m, m-4) codes by extending the syndrome table and by introducing new affine transformations.

