

Non-invasive Low-Cost Water Quality Monitoring System

OBJECTIVE

- Contaminated drinking water is one of the major problems that affect the health of the people.
- It is imperative to use an IOT system to monitor the quality of water
- The main challenges addressed by the project are
 - Robust design, deployment and testing \checkmark
 - Validation of low-cost IoT nodes without disturbing the normal operation of the water supply.

FEATURES

- Low cost and robust IoT based TDS measurement system.
- Non-invasive mechanism implemented
- ** server at predefined intervals through WiFi.
- mechanism

Dynamic Billing and Leakage Detection using Digital Meters

OBJECTIVE

- Achieve dynamic billing and leakage detection.
- Develop a predictive model to forecast and analyze water quantity parameters for efficient distribution of water supply.

FEATURES

- Latest Technology with digital interface
- ESP32 interfaced to Digital Ultrasonic based water flow meters and pressure sensors to monitor flow rate and pressure
- Rugged modules and easy to install **

Authors: Usha Goparaju, SVSLN Surya Suhas Vaddhiparthy

R&D SH WCASE 2021

Technology, Social Impact

ensured by a proper compensation and calibration

Fig3: Block Diagram

Research Center Name: Smart City Research Centre

