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Topological Mapping for Manhattan-like Repetitive Environments
ABSTRACTS OBJECTIVE

We showcase a topological mapping framework for a challenging indoor warehouse setting. At the most abstract 1
level, the warehouse is represented as a Topological Graph where the nodes of the graph represent a particular '
warehouse topological construct (e.g. rackspace, corridor) and the edges denote the existence of a path
between two neighbouring nodes or topologies. At the intermediate level, the map is represented as a Manhattan
Graph where the nodes and edges are characterized by Manhattan properties and as a Pose Graph at the
lower-most level of detail. The topological constructs are learned via a Deep Convolutional Network while the
relational properties between topological instances are learnt via a Siamese-style Neural Network. In the paper,

Developing a topological mapping framework for a challenging indoor warehouse setting.
2. Recovering near ground-truth trajectories starting from highly erroneous trajectories.

we show that maintaining abstractions such as Topological Graph and Manhattan Graph help in recovering an Topological
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1. A deep convolutional network capable of learning warehouse topologies. _T-——-—f; ]
2. A Siamese Neural Network based relational classifier which resolves topological element ambiguity and helps achieve an L |
accurate pose graph purely based on Topological relations. — i
3. We showcase a backend SLAM framework that integrates loop closure relations from an intermediate level Manhattan 0 “%A -
Graph to the lowest level Pose Graph and elevate a disoriented unoptimized map to a structured optimized map which s T W : ; bl 5 s
closely resembles the floor plan of the warehouse. Apart from the loop closure relations, the SLAM integrates other 0 O L/ L
Manhattan relations to the pose graph. Ablation studies show the utility of both loop and Manhattan constraints as well as | ! ] [ . { 1 ’ L i { 4 ! (
the superior performance of an incremental topological SLAM over a full batch topological SLAM. \ \
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