

R&D SH & WCASE 2021

E-Governance and Information Aggregation over Blockchains

Secure E-Governnace

Auctions

- Aim: Maximize Social Welfare
- Combinatorial auctions generate greater revenue
- How to get agents to elicit their true valuation?
- How to protect the privacy of these bidding information?
- Our Approach: Yao's Millionaires' Problem
 - Secure Comparison of two integers [4]

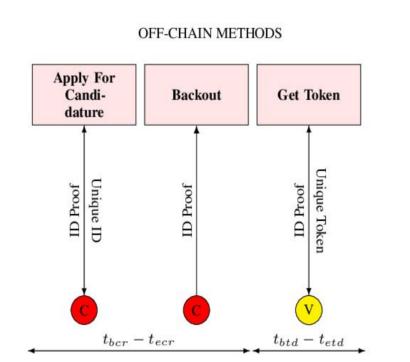
Voting

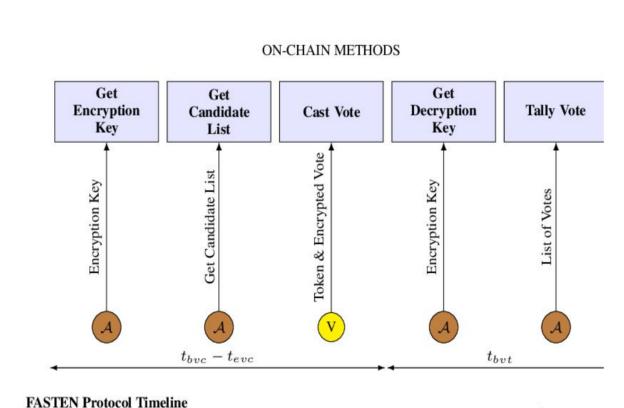
- Aim: Fair Voting System
- Voting requires high levels of anonymity, privacy and security
- In addition to this, the votes should be immutable and verifiable

Record Management

- Aim: Secure maintenance of data
- Is it safe to have trust in a single party?
- How to assure that the data is not lost?

Solution: Smart Contracts

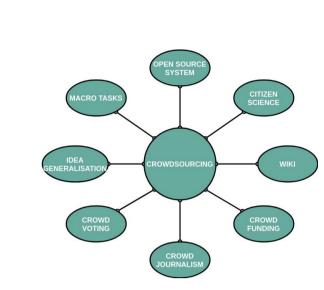

- Use of Smart Contracts is the main advantage of Blockchain Technology in e-governance.
- Decentralisation, Data integrity, Transparency: Increased effectiveness of government.
- Convenient means of interaction between citizens and government



8

FASTEN: Fair and Secure Distributed Voting Using Smart Contracts [1]

- Voter Anonymity: A vote cannot be traced back to the voter
- **Vote Concealment:** The vote's value should remain hidden from the system
- Vote Immutable: A vote should be impossible to alter by anyone
- Double Voting Inhibition: A voter should be allowed to vote only once in a specific election

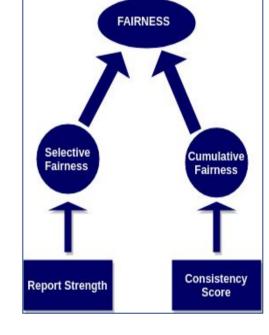

PUBLICATIONS

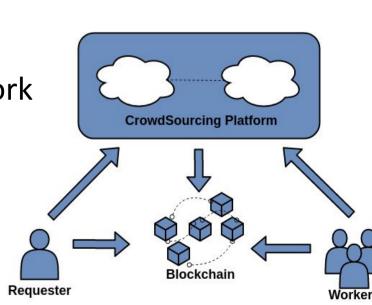
- 1. Sankarshan Damle, Sujit Gujar, & Moin Hussain Moti (2021). FASTEN: Fair and Secure Distributed Voting Using Smart Contracts. ICBC, 2021.
- 2. Moin Hussain Moti, Dimitris Chatzopoulos, Pan Hui, Boi Faltings, Sujit Gujar. (2020). Orthos: A Trustworthy Al Framework for Data Acquisition. **EMAS**, 2020.
- 3. Moin Hussain Moti, Dimitris Chatzopoulos, Pan Hui, Sujit Gujar. (2019). FaRM: Fair Reward Mechanism for Information Aggregation in Spontaneous Localized Settings. **IJCAI**, 2019.
- 4. Sankarshan Damle, Boi Falting & Sujit Gujar. (2019). A Truthful, Privacy-Preserving, Approximately Efficient Combinatorial Auction For Single-minded Bidders. **AAMAS**, 2019.
- 5. Dimitris Chatzopoulos, Sujit Gujar, Boi Faltings, & Pan Hui. (2018). Privacy Preserving and Cost Optimal Mobile Crowdsensing Using Smart Contracts on Blockchain. IEEE 15th International Conference on Mobile Ad Hoc and Sensor Systems MASS, 2018.

Information Aggregation

Crowdsourcing

- Example
 - NASA's Space Robotics Challenge
 - DARPA Red Balloon Challenge
 - Mobile Crowdsensing [5]
- Challenges
 - Information Elicitation
 - Ensuring Privacy
 - Fair Rewards




FARM: Fair Reward Mechanism [3]

- Nash Incentive Compatible Mechanism
- Spontaneous localized settings
- Fair reward is acheived from:
 - Selective Fairness: Agents with same reports are evaluated similarly
 - Cummulative Fairness: Considers agent's consistency and history of reporting as part of reward
- Reward considers the following scores:
 - Report Strength
 - Consistency Score
 - Reliability Score
 - Location robustness Score

ORTHOS: A Trustworthy Al Framework For Data Acquisition [2]

 Blockchain-based trustworthy framework for spontaneous location-based information aggregation

USES OF SMART CONTRACTS