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Introduction to Differential Privacy
Differential Privacy (DP) is a system for publicly sharing 

information about a dataset that masks individual 

contributions while retaining the big picture, via data 

randomization. It allows us to quantify the privacy loss.

Differentially Private Deep Reinforcement Learning
RLis a sub-field of ML where we train an agent to 

learn a policy to perform a task in an environment by 

offering a reward to it for every action it takes. Deep 

RL uses Deep NNs for training with policy gradients. 
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(ε,δ)-DP. A randomized algorithm M 

gives a privacy guarantee of (ε,δ)-DP if 

for all pairs of adjacent datasets d, d', 

and all outputs S with ε,δ > 0, we have

Pr[M(d) = S] ≤ exp(ε)・Pr[M(d’) = S] + δ    Smaller εs,  δs => better privacy
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We need to  protect the private reward function being used 

to train the agent by introducing DP to Deep RL by smartly 

adding noise to the learning process. We also investigate 

the relationship between privacy budget and generalization 

ability of the learned policy.
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These techniques enable us to build AI solutions for sensitive problems like cancer, 

dementia, depression, covid etc. Applying these techniques to various algorithms 

in AI and ML has become an active area of research. They also help provide 

optimizations in other aspects of AI problems. A need for new techniques such as 

DP arises due to infeasibility of older encryption like methods.
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Value: 
1. Difference in utility 
2. Sum is global 

difference 

Root: 
1. Track's solutions 
2. Broadcasts the best 

solution, so far 

Goal

Designing a scalable DCOP algorithm 
that preserves constraint privacy 
from related participants through 
differential privacy techniques
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Challenges 

● Protecting information leak  
during information exchange 

● From the final assignment 
● Ensuring Scalability 


