

Semantic Role Labelling on Hindi-English Code-Mixed Data

ABSTRACT

•A 'semantic role' is the underlying relation that a constituent has with the predicate in a sentence.

•We present a 2-step system for Semantic automated Role Labelling Hindi-English of code-mixed tweets.

•We explore the issues posed by noisy, user generated code-mixed social media data.

•We also compare the individual effect of various linguistic features used in our system.

• Our proposed model is a 2-step system for automated labelling which gives an overall accuracy of 84% for Argument Classification, marking a **10%** increase over the existing rule-based baseline model.

	0
Label	Description
ARGA	Causer
ARG0	Agent
ARG1	Theme
ARG2	Benificiary
ARG2_ATTR	Attribute
ARG2_LOC	Physical Location
ARG2_GOL	Destination
ARG2_SOU	Source
ARG3	Instrument
ARGM_DIR	Direction
ARGM_LOC	Location
ARGM_MNR	Manner
ARGM_EXT	Extent
ARGM_TMP	Temporal
ARGM_REC	Reciprocal
ARGM_PRP	Purpose
ARGM_CAU	Cause
ARGM_DIS	Discourse
ARGM_ADV	Adverb
ARGM_NEG	Negative
ARGM PRX	Complex Predicate

Table 1:PropBank Tagset used for snnotation

APPROACH

The first step is to identify the arguments of the predicates in the sentence. These identified arguments are then classified into semantic roles in step 2. We used SVM for the first step of binary classification One vs rest multi class SVM was used for the second step. The data was split 80:20 for training and testing respectively.

> We used 14 linguistic features Indian Languages: in our system.

Baseline features:

- Identified verb in the sentence• HeadwordPOS + Phrasetype
- Headword of the chunk
- Part of Speech tag of the head• HeadwordPOS(UD) • UD dependency label word
- Syntactic category of the phrase (NP, VP, CCP etc.)
- Predicate + Phrasetype
- Predicate + Headword

R&D SH WCASE 2021

Technology, Social Impact

RESULTS

cation.

Fasture		Identification		
reature	Р	R	f-score	
Baseline	56	53	55	
with predicate-lang	57	54	55	
+dependency	81	76	78	

Eastana	Classificati				
reature	Р	R	f-sco		
Baseline	27	15	19		
+dependency	84	84	84		

Table 4: Accuracy scores for Argument Classification.

Features Used

- Paninian dependency label
- Named Entities
- Headword + Phrasetype

Code-Mixed data:

- Predicate + language
- Headword + language

The previously proposed rule based baseline model gives an accuracy of 96% and 73% respectively for Argument Identification and Classification respectively.

As the classification step is based on the identified arguments from the first step, we choose to adopt a hybrid approach. We use the rule based system for argument identification and SVM for argument classification

REFERENCE & CONTACT

- https://github.com/riyapal/Hi-En-SRL
- http://web2py.iiit.ac.in/research centres/publications /view publication/mastersthesis/833
- riva.pal@gmail.com

Figure 1:Example sentence from the corpus with Dependency and PropBank labels