

Linguistically Informed Hindi-English Neural Machine Translation

ABSTRACT

Hindi-English Machine Translation is a challenging problem, owing to multip factors including the morphological complexity and relatively free word order of Hindi, in addition to the lack of sufficient parallel training data. We propose a method to employ additional linguistic knowledge which is encoded by different phenomena depicted by Hindi to reduce data sparsity. We generali the embedding layer of the state-of-the-art Transformer model to incorporate linguistic features like POS tag, lemma and morph features. We compare the results obtained on incorporating this knowledge with the baseline systems and demonstrate significant performance improvement. observe that although the Transformer NMT models have a strong efficacy learn language constructs, the usage of specific features further help in

improving the performance.

Adding Linguistic Input Features

Let $E \in \mathbb{R}^{M \times K}$ be the word embedding matrix for the standard Transformer encoder with no input features where m is the word embedd size and K is the vocabulary size of the source language. Therefore, the n dimensional word embedding e(x_i) of the token x_i (one-hot encoded representation i.e. 1-of-K vector) in the input sequence $x = (x_1, x_2, ..., x_r)$ be written as

e(x i) = Ex i

We generalize this embedding layer to some arbitrary number of features |F| as

 $\{e'\}(x_i) = \operatorname{concat}(E_{j}x_{ij}) \forall |F|$

where $E_j \in \{\mathbb{R}\}^{m_j \times K_{j}}$ are the feature embedding matrices wi m j as the feature embedding size and K j as the vocabulary size of the feature.

HYDERABAD

5				The embedding layer size of the word or subword feature is set to bring the total size to 512.		
r	Dataset	Sentences	Tokens	—	Emmbedding Sizes	
E				Features	all	single
e	IITB Train	1,528,631	21.5M / 20.3M	Subword tags (IOB tagging)	6	5
/e	IITB Test	2,507	62.3k / 55.8k	Pos tags	10	10
				Morph Features	20	20
	IITB Dev	520	9.7k / 10.3k	Lemma	100	150
				Word or subword	*	*

Results

ing	System (Word Based)	BLEU	System (Subword based)	BLEU
٦-	Word baseline	17.13	Subword baseline	18.47
) can	POS tags	17.51 (+0.38)	IOB tags	18.64 (+0.17)
			POS tags	19.11 (+0.64)
	Lemma	17.65 (+0.52)	Lemma	17.99 (-0.48)
	Morph features	17.44 (+0.31)	Morph features	19.02 (+0.55)
:h ^th	All features	17.32 (+0.19)	IOB, POS tags and Morph features	19.21 (+0.74)
			All features	18.34 (-0.13)

Authors: Vikrant Goyal, Pruthwik Mishra and Dipti Misra Sharma

Dataset

R&D SH WCASE 2020

Research Center Name: LTRC