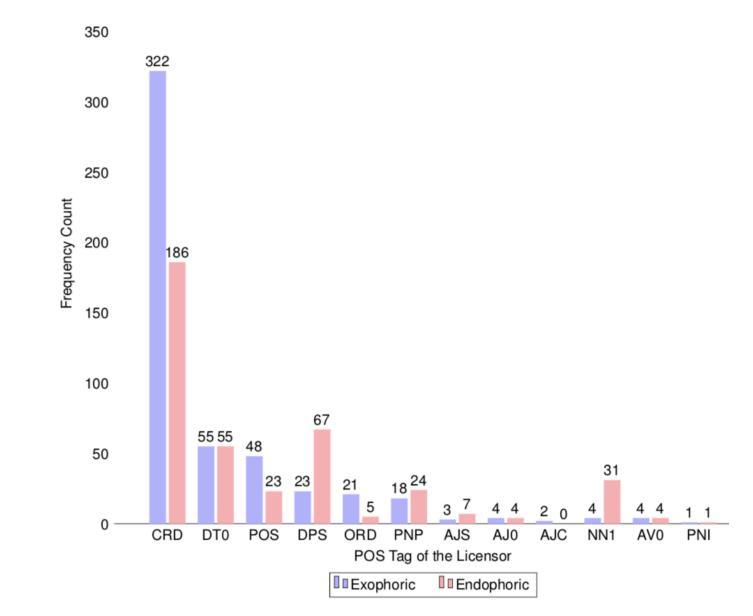


Resolving Noun Ellipsis in English

TASK DESCRIPTION

NOUN Ellipsis is a linguistic phenomenon whereby certain parts of a sentence are omitted or deleted, and have to be retrieved from discourse or real-world context. For example:

⟨ L3315 m2 Jordy ⟩ Do you have coffee?
⟨ L3316 m2 Daphne ⟩ In the kitchen
⟨ L3316 m2 Jordy ⟩ I will make [NP some [e]] for us.


- Ellipsis RESOLUTION involves:
- 1. Detection of the ELIDED Noun: Coffee
- 2. Selection of the right ANTECEDENT Candidate: Some
- 3. Reconstruction: I will make some coffee for us.

ANNOTATED DATA CREATION

We annotate the first 100 movies of the Cornell Movie Dialogs dataset (16.08% of the total corpus).

Annotation guidelines described in Khullar et. al, 2020 (LREC: In Press)

- A total of 946 instances:
- 438 endophoric & 508 exophoric.
- Biggest Resource on NE
- Novel insights on distribution of licensors and antecedents.

EXPERIMENTS

Rule Based BASELINE

- 1. Syntactic and semantic rules (Khullar et.al, 2019)
- 2. Tested on a manually curated dataset.
- 3. Errors mainly due to incorrect POS tags.

Task	Positive Samples	Negative Samples	Precision	Recall	F1-Score
Detection	76	132	69.15%	85.53%	76.47%
Resolution	65	29	78.79%	63.41%	70.27%

Table 2: Performance of NPE detection and resolution systems on the testset.

• Supervised ML BASELINE

- 1. Given [3-gram] predict whether the centre element is a licensor or not.
- 2. Given [licensor, antecedent candidate, context] if the antecedent candidate corresponds to an actual resolution or not.

• Neural Network pipeline Work in Progress.

	Averaged Results	Precision	Recall	F1-Score
Task	ML Model			
	Naive Bayes	0.6217	0.8376	0.7137
Noun Ellipsis	Linear SVM	0.6407	0.8587	0.7339
Detection	RBF SVM	0.6054	0.9045	0.7253
	Nearest Neighbors	0.7369	0.5949	0.6583
	Random Forest	0.1750	0.3500	0.2333
	Naive Bayes	0.6096	0.6008	0.6052
Noun Ellipsis	Linear SVM	0.6213	0.4258	0.5053
Resolution	RBF SVM	0.6007	0.9858	0.7465
	Nearest Neighbors	0.6061	0.3418	0.4371
	Random Forest	0.6000	0.9989	0.7497