GEO-LOCATING UAVs FROM ANALOG VIDEO DATA METHODOLOGY

ABSTRACT

Unmanned Aerial Vehicles or UAVs are becoming a key platform for a wide variety of applications like disaster assessment, traffic monitoring, target tracking, etc. Since most of these UAVs are flown independently, it is necessary to know their geo-locations for better airspace monitoring and management. To effectively integrate information obtained from video streams generated by multiple UAVs, the proposed solution provides a GUI to process videos, train and evaluate a SVM for extracting the relevant information from them, while addressing the video/image challenges posed due to analog video capture with continuously changing background and foreground information. The developed model and prototype show that the trained model performs well and achieves a text recognition level of more than 99% and can recognise text even when it is faint to the human eye.

SUMMARY OF DATA

PERFORMANC STATISTICS

Table 1: Data Summery

Number of Frames	2826
Frame Rate	25 FPS
Number of Regions of Textual Data per frame	20
Number of Characters per frame	55

SUMMARY OF MODEL

Table 2: Hyperparameters Summary

Algorithm	SVM with Radial Basis Function Kernel
C (Alphabetic)	100
Gamma (Alphabetic)	0.0001
C (Numeric)	10
Gamma (Numeric)	0.0001

Table 3: Numeric Data Scores							
Character	precision	recall	f1-score	S			
0	1	1	1				
1	0.98	1	0.99				
2	1	1	1				
3	1	0.99	1				

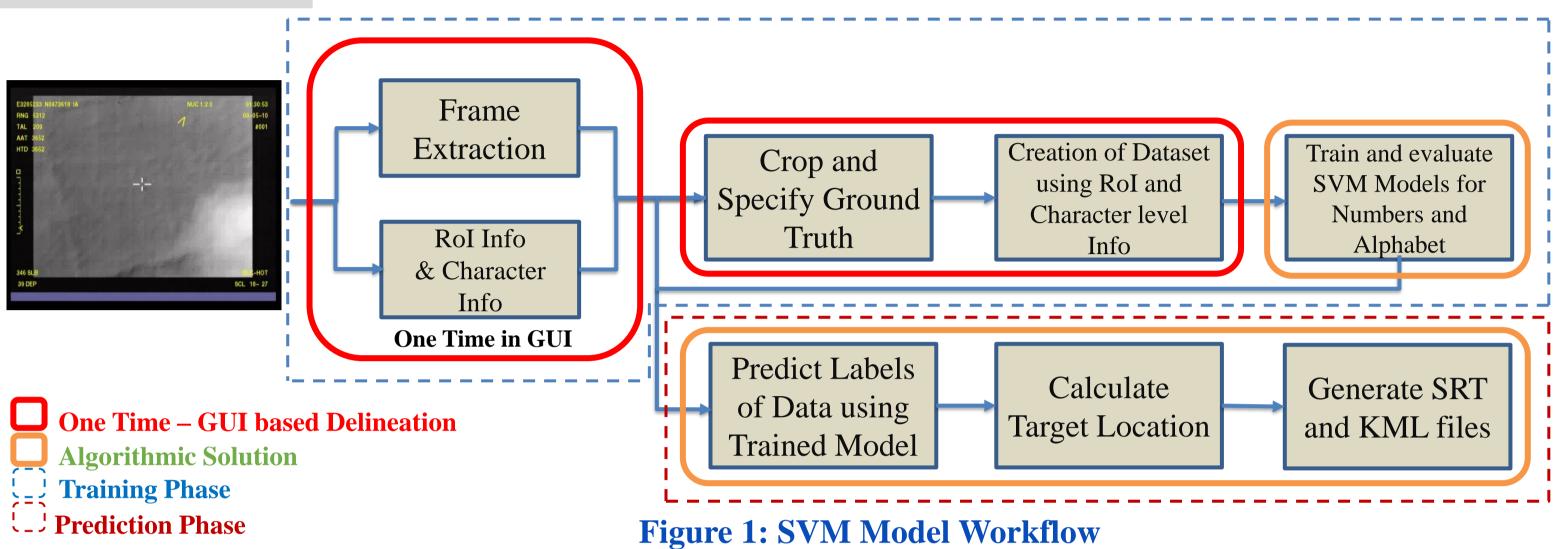
_				
4	1	1	1	
5	1	0.99	0.99	
6	1	1	1	
7	1	0.99	0.99	
8	1	0.99	0.99	
9	1	0.99	1	
Wt Average	1	1	1	

Table 5: Accuracies during Validation and Testing Phases support 2717 **10 fold Cross validation Test Accuracy** 3292 Alphabetic 0.99697 0.9976 3271 1806 Numeric 0.99531 0.9950 1607 1494 1661 1698 1219 1017 19782 wt. Average Table 4: Alphabetic Data Scores 0 0 support 1705 579 1123 1156 **Figure 2: Confusion Matrix Figure 3: Confusion Matrix of** 535 of Test Numeric Data **Test Alphabetic Data** 598 1137 **SUMMARY** 1107

Character	precision	recall	f1-score	
А	1	1	1	
В	1	0.99	1	
D	1	1	1	
Е	1	1	1	
G	1	1	1	
Н	1	1	1	
L	1	1	1	
Ν	1	1	1	
Р	1	0.98	0.99	
R	1	1	1	
S	1	1	1	
Т	0.99	1	0.99	
Wt Average	1	1	1	

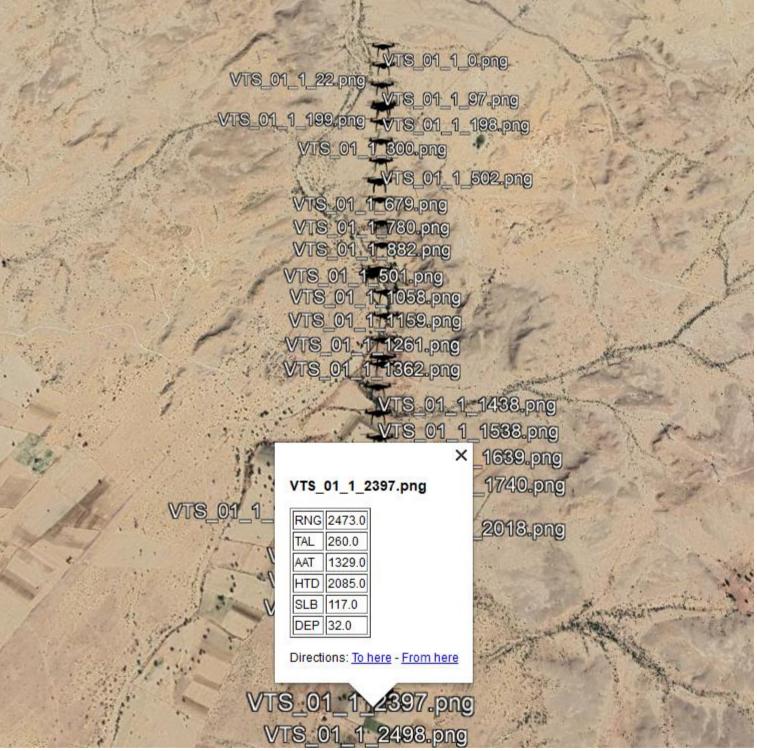
568

536


581

1679

11304



R&D SH WCASE 2021

The current deliverable has been tested on videos obtained from different platforms. The final output consists of a KML file, a CSV file containing the predicted labels and an SRT file which can be played along with the video. Thus, using the analog video captured by a UAV, this implementation helps in finding its geo-location, which contributes towards better airspace monitoring and management.

Authors: Dr. K. S. Rajan (LSI), Dr. Avinash Sharma (CVIT), Anirudh Potlapally

Figure 4: Path of the UAV over the real terrain

Research Center Name: LSI-CVIT