

REFERENCE EVAPOTRANSPIRATION USING MACHINE LEARNING MODELS OVER SEMI-ARID CLIMATES ¹Adeeba Ayaz, ²Maddu Rajesh, ³Shailesh Kumar Singh, ⁴Rehana. S. International Institute of Information Technology, Hyderabad -500032

INTRODUCTION

Reference Evapotranspiration (ET) is a complex hydrological variable defined by various climatic variables affecting water and energy balances and critical factors for crop water requirements and irrigation scheduling.

OBJECTIVES

the models.

- To develop different Machine Learning models, Support Vector Regression(SVR), Artificial Neural Network(ANN), Random Forest(RF) and Gradient Boosting Regression(GBR) for modelling ET in Hyderabad and Waipara Stations.
- To assess the performance and stability of these models with different input combinations over the two stations.
- То appropriate approach boost the find an to • modelling performance under the limited input factors condition.

STUDY AREA & METHODOLOGY

```
The study areas are Hyderabad(Top),
which is the capital southern Indian
province of Telangana and
Waipara(Bottom) situated in the
South Island of New Zealand ,in
the Waipara River. The study used
everyday meteorological data from
Jan(1965)-Dec(2015).
```


The standard equation used is FAO-Penman Monteith method, given as $ET = \frac{0.408D(R_n - G) + g(900/T + 273)U_2(es - ea)}{0.408D(R_n - G) + g(900/T + 273)U_2(es - ea)}$

 $D+g(1+0.34U_{2})$

Where, ET = reference evapotranspiration (mm d⁻¹), D = slope vapor pressurecurve [k pa°C⁻¹], R_n = net radiation (MJ m⁻² d⁻¹), G = soil heat flux (MJ m⁻² d⁻¹) ¹), $U_2 = wind speed measured at 2 m height [m s⁻¹], (e_s - e_a) = pressure deficit for$ measurement at 2 m height [k Pa], T = average temperature at 2 m height . (°C), 900 = coefficient for the reference crop [I J⁻¹ Kg K d⁻¹], g = psychrometric constant [k pa $^{\circ}C^{-1}$], 0.34 = wind coefficient for the reference crop [s m $^{-1}$]. Four ML models were implemented for modelling the ET relationship of the Hyderabad Waipara stations, and namely, ANN, GBR, SVR and RF regressor and a comparison was made between

^{1,2}Research Scholar, Lab for Spatial Informatics, IIITH,, ³Hydrologist, National Institute of Water & Atmospheric Research Ltd (NIWA), New Zealand, ⁴Assistant Professor, Lab for Spatial Informatics, IIITH

INTERNATIONAL INSTITUTE O INFORMATION TECHNOLOGY HYDERABAD

RESULTS & DISSCUSIONS

CONCLUSION

- The study investigated that the best performance was when all input variables were used, the study, however, finds that even three input variable combination (Temperature, Wind Speed and Relative Humidity values) or two combination input variables (Temperature and Relative Humidity, Temperature and Wind Speed) also can provide practically identical results as using all data.
- The ANN model offered the most remarkable performance among four tested models regardless of under which station or input combination, trailed by SVR and GBR models, which could likewise accomplish moderately good performance.
- This study also concludes that even if not all parameter information is available in a particular station, we can use the three which are Temperature, Relative Humidity, and combination parameters combinations, which are Temperature and Relative Humidity or Temperature and Wind Speed values, to estimate reference ET.

	Validation			Paramete rs	Mod el	Training (Calibration)			Validation		
MA E (best is 0.0)	R ² (best is 1.0)	RMSE (best is 0.0)	MAE (best is 0.0)			R ² (best is 1.0)	RM SE (best is 0.0)	MA E (best is 0.0)	R ² (best is 1.0)	RMSE (best is 0.0)	MAE (best is 0.0)
0.05	0.99 7	0.067	0.05	All parameters	AN N	0.98 3	0.15 1	0.11	0.98 3	0.172	0.12
0.12	0.98 7	0.183	0.13		GBR	0.98 8	0.12 6	0.09	0.96 3	0.229	0.16
0.03 1	0.99 4	0.123	0.079		RF	0.99 6	0.07	0.04 1	0.96 0	0.242	0.163
0.10 9	0.99 0	0.155	0.114		SVR	0.99 4	0.08 6	0.06 7	0.99 0	0.119	0.085
0.28	0.92 4	0.401	0.22	Temperatu re, Wind Speed, Relative Humidity	AN N	0.76 4	0.57 5	0.42	0.65	0.695	0.51
0.28	0.90 8	0.457	0.29		GBR	0.78 5	0.54 5	0.41	0.61 4	0.732	0.56
0.10 5	0.91 6	0.436	0.261		RF	0.95	0.26 1	0.18 2	0.54 8	0.792	0.574
0.27 3	0.92 1	0.422	0.261		SVR	0.74	0.59 9	0.41 7	0.59 6	0.749	0.543
0.62	0.58 8	0.968	0.62	Temperatu re and Wind Speed	AN N	0.51 2	0.80 5	0.60	0.37 8	0.93	0.75
0.61	0.57 2	0.989	0.63		GBR	0.57 9	0.76 3	0.57	0.41 3	0.903	0.73
0.39 7	0.50 3	1.065	0.68		RF	0.77	0.56 4	0.38 7	0.31	0.975	0.771
0.62 1	0.55 4	1.008	0.644		SVR	0.45 9	0.86 5	0.60 3	0.35 9	0.944	0.744
0.90	0.35 9	1.222	0.94	Temperatu re and Relative Humidity	AN N	0.73 1	0.60 7	0.46	0.62	0.723	0.55
0.89	0.36 7	1.201	0.94		GBR	0.76 9	0.56 4	0.42	0.58 2	0.762	0.57
0.66 9	0.19 4	1.36	1.035		RF	0.86 7	0.42 6	0.29 4	0.49	0.833	0.592
0.89 9	0.39 2	1.177	0.908		SVR	0.71	0.63 3	0.45	0.61	0.728	0.541

Hyderabad(Left) periods for

Wind Speed or the two