

Earthquake Disaster Risk Index – A Simple Method for Assessing Relative Risk in a Country

Introduction:

- There is a significant rise in the world's urban population under earthquake threat in the past 50 years.
- The infrequent revision of design codes , municipal bye-laws, poor awareness about negative effects of disasters and lack of quantitative fell of the possible life loss and economic loss jeopardizes the earthquake safety in the country.
- There is a need assess earthquake risk of cities periodically that will help mitigate negative consequences, prepare and respond to future events.

Proposed Methodology

- The buildings in a town or city are grouped into different building typologies like load bearing wall buildings, frame buildings, braced buildings and mixture of these three.
- The Earthquake Disaster Risk Index (EDRI_b) for each building is calculated as

Proposed Methodology

Considering the maximum and minimum value of hazard, exposure and vulnerability the range of **EDRI**_b is [0,9]

 $EDRI_{Typ,i} = \frac{\sum_{i=1}^{n}}{\sum_{i=1}^{n}}$

In which N_T is total number of typologies and $EDRI_{Tvp,i,i}$ is EDRI of sample building J surveyed of typology i.

 $EDRI_{Town} = \frac{\sqrt{2}}{2}$

Example

05%

20%

20%

S.No.	City or Town	Region	Populatio n	Total Number of Buildings	Number of Buildings Surveyed
1.	City A	Hilly	10,70,602	224,736	596
2.	Town B	Hilly	1,00,286	28,672	183
3.	Town C	Plain	1,43,286	32,681	722
4.	City D	Plain	16,84,222	2,81,986	488

Pradeep Kumar Ramancharla, C.V,R.Murthy

R&D SH WCASE 2021

Technology, Social Impact

$$\frac{\sum_{j=1}^{N_T} EDRI_{Typ,i,j}}{\left(\sum_{i=1}^{N_T} N_{Typ,i}\right)}$$

$$\frac{\sum_{i=1}^{N_T} N_{Typ,i} EDRI_{Typ,i}}{\left(\sum_{i=1}^{N_T} N_{Typ,i}\right)}$$

Table 1: Selected cities located in hilly and plain regions

Table 2: EDRI scores of all the surveyed buildings

	EDR	Ise of Surveye	EDRITown of all Bui				
Building Typology	Number of Buildings Surveyed	EDRI⊤yp	EDRIsb	Number of Buildings in Town	Numbe buildin Life Th		
	City A						
Reinforced Concrete Building	187	0.39		9,763	3,8		
Brick Masonry Building with Concrete Roof	382	0.31	0.33	1,66,496	50,8		
Town B							
Reinforced Concrete Building	145	0.67		5,825	3,9		
Brick Masonry Building with Concrete Roof	38	0.68	0.67	11,330	7,7		
Town C							
Reinforced Concrete Building	580	0.19		11,298	2,1		
Brick Masonry Building with Concrete Roof	142	0.13	0.18	6,585	84		
City D							
Reinforced Concrete Building	359	0.77		11,779	9,1		
Brick Masonry Building with Concrete Roof	129	0.52	0.70	1,82,994	94,2		

- For demonstrating the method two towns and two cities located n the hills and the plains are selected.
- The EDRI for an individual building of a particular typology is calculated by addressing the questions related hazard, exposure and vulnerability.
- From the EDRI score of individual buildings of all typologies the final EDRI score of the city/Town is estimated.

Conclusion

- The proposed EDRI for cities and towns is simple to estimate and generic enough to be used in any country.
- The comparison of earthquake risk of cities and towns quantitatively, guides in the rational allocation of the available limited mitigation resources.
- Improves awareness of the stake holders to take immediate actions on the factors contributing to risk.

Earthquake Engineering Research Centre

