

## New Empirical Formula for Fundamental Period of Tall Buildings in India by Ambient Vibration Test

## **INTRODUCTION**

- > Urbanization is rapidly increasing in every city in India. There are several earthquake safety issues involved in planning, designing and constructing tall buildings.
- > Among several aspects, the fundamental natural period 'T' of the building is one of the important parameters in the earthquake resistant design of buildings.

## **OBJECTIVE**

> The main objective of the present study is to evaluate suitability of present formulae for high-rise building using ambient vibration test and, if necessary, propose new formulae for Indian tall buildings.

## **EXPERIMENTAL STUDY**

- > The current ambient vibration study has been carried out on 21 high-rise buildings located in Hyderabad and Mumbai city.
- > The power law and linear regression analysis is adopted to establish the relation between the period and the various building parameters such as height (H), width (D) and product of lateral dimension (A) of the buildings.
- > The evaluation of the regression analysis is done with the help of standard error of estimate Se and the coefficient of determination R2.

## **CONCLUSION**

- 1. The current empirical expression found to be over-conservative for RC SW buildings. Empirical expression of RC SW wall should be stated separately and should not be included in 'other' category.
- 2. The empirical expression for estimating the fundamental natural periods for RC SW buildings with infill panels can be taken as follow

$$T = 0.01 H^{1.7}$$

Where, H is height of building from the base (in m)

3. For RC buildings above 20 floors (>60m) fundamental natural period can be be found out b

$$T = 0.01 H^{1.7}$$

Where, H is height of building from the base (in m)

Proceeding of 16<sup>th</sup> World Conference on Earthquake Engineering

# R&D SH WCASE 2021

**Technology, Social Impact** 

## RESULTS







Figure: Plot of experimental data and proposal expression for natural period of (a) RC SW buildings (b) RC buildings above 20 floors with infill wall panel



Figure: Building Vibration Sensor



Figure: Examples of typical high-rise buildings

### Table: Fundamental Period of RC buildings above 20 storey (>60m) measured using ambient vibration test

| c         | Building ID | Number<br>of<br>Storey | Height<br>(m) | Typical<br>F.F.<br>Height<br>(m) | Туре               | Dimensions (m) |                | Time period (sec) |                 |
|-----------|-------------|------------------------|---------------|----------------------------------|--------------------|----------------|----------------|-------------------|-----------------|
| 5.<br>No. |             |                        |               |                                  |                    | Longer<br>(L)  | Shorter<br>(D) | Longer<br>(TL)    | Shorter<br>(TD) |
| 1         | MUM02       | 21                     | 63.00         | 3.00                             | Residential        | 49.07          | 24.80          | 1.137             | 1.154           |
| 2         | HYB12       | 22                     | 65.60         | 3.00                             | Residential        | 28.94          | 26.56          | 0.920             | 0.963           |
| 3         | HYB13       | 22                     | 65.60         | 3.00                             | Residential        | 44.55          | 28.97          | 0.952             | 0.910           |
| 4         | HYB53       | 22                     | 66.00         | 2.95                             | Residential        | 27.00          | 27.00          | 1.050             | 1.050           |
| 5         | MUM14       | 22                     | 66.00         | 3.00                             | Residential        | 26.40          | 23.30          | 1.365             | 1.204           |
| 6         | HYB18       | 22                     | 66.00         | 3.00                             | Residential        | 81.08          | 25.45          | 1.078             | 1.154           |
| 7         | HYB23       | 17                     | 66.23         | 3.90                             | Commercial         | 67.64          | 24.45          | 0.871             | 1.154           |
| 8         | MUM01       | 23                     | 69.00         | 3.00                             | Residential        | 49.07          | 24.80          | 1.122             | 1.388           |
| 9         | MUM15       | 25                     | 71.86         | 3.00                             | Residential        | 24.67          | 13.63          | 1.107             | 1.545           |
| 10        | MUM03       | 25                     | 75.00         | 3.00                             | Residential        | 48.19          | 40.62          | 1.412             | 1.365           |
| 11        | MUM16       | 26                     | 77.86         | 3.00                             | Residential        | 37.60          | 16.80          | 1.222             | 1.545           |
| 12        | HYB20       | 27                     | 81.00         | 3.00                             | Residential        | 73.43          | 20.58          | 1.170             | 1.280           |
| 13        | HYB32       | 26                     | 83.60         | 3.26                             | Residential        | 50.46          | 42.31          | 1.138             | 1.122           |
| 14        | HYB42       | 28                     | 86.37         | 3.00                             | Residential        | 43.11          | 40.38          | 1.388             | 1.154           |
| 15        | HYB19       | 24                     | 87.14         | 3.75                             | Commercial         | 80.26          | 46.03          | 1.241             | 1.204           |
| 16        | MUM08       | 31                     | 90.95         | 2.90                             | Residential        | 52.54          | 35.18          | 1.517             | 1.638           |
| 17        | MUM06       | 37                     | 119.60        | 3.20                             | Residential        | 46.39          | 29.72          | 1.780             | 2.340           |
| 18        | MUM07       | 37                     | 137.70        | 3.60                             | Residential        | 51.54          | 37.85          | 2.340             | 2.642           |
| 19        | HYB31       | 42                     | 146.75        | 3.40                             | Residential        | 33.34          | 29.50          | 3.033             | 3.033           |
| 20        | MUM09*      | 35                     | 110.80        | 3.20                             | Hotel+Office       | 65.84          | 34.92          | 3.723             | 2.925           |
| 21        | MUM10*      | 37                     | 115.40        | 3.20                             | Proposed<br>Office | 48.60          | 37.50          | 3.561             | 2.482           |



Figure: Identification of Natural Frequency

| Table: Proposed Formulae |                    |                          |                          |      |  |  |  |  |  |  |
|--------------------------|--------------------|--------------------------|--------------------------|------|--|--|--|--|--|--|
| Туре                     | Formula            | S.E.E. (S <sub>e</sub> ) | IS 1893:<br>2002         | S.E. |  |  |  |  |  |  |
| RC SW                    | $T = 0.01 H^{1.1}$ | 0.135                    | $T_{-}$ 0.09 H           | 0.   |  |  |  |  |  |  |
| Above<br>60 m            | $T = 0.01 H^{1.1}$ | 0.143                    | $I = \frac{1}{\sqrt{D}}$ | 0    |  |  |  |  |  |  |

Pulkit D. Velani and R. Pradeep Kumar, Earthquake Engineering Research Centre







