

Earthquake behaviour of Buildings on Slopes Introduction

- The construction in hilly regions is generally constrained by local topography resulting in vertical as well as horizontal irregularities in the buildings.
 - Dynamic properties of such buildings vary significantly.
 - Fundamental Natural Period of a building is one such important dynamic property.
- Ambient Vibrations of certain buildings constructed on hill slopes of Mussoorie were recorded to obtain respective Natural periods of certain buildings.
- Observed that the existing code provisions for estimating the approximate period of a building are not efficient enough in the case of such buildings. • An empirical relation to estimate natural period of buildings constructed on
- slopes was derived using regression analysis.

Regression Analysis

- Obtained data set is not sufficient to yield an efficient relation.
- of 270 buildings were total modelled using SAP 2000, based on the above data.
- Relation to estimate natural period has been derived using regression analysis

Conclusions

obtained empirical relations to estimate the Natural period of a building • The constructed on hilly region along Valley and Ridge directions respectively.

Regres	SIO	n Anaiys	SIS I	results coeffici	(Cons ents F	R2. Se	aiues a)	ana Reg	jressioi			
M No	f	g	h	α	β ₁	β2	β ₃	R ²	S _e			
VALLEY Direction												
V1	Η	1	D	0.004	1.37	N/A	-0.61	0.914	0.123			
V2	Η	1+sinθ	D	0.013	1.40	-0.48	-0.63	0.972	0.070			
V3	H	1+sinθ	A	0.013	1.38	-0.46	-0.62	0.941	0.091			
	RIDGE Direction											
R1	Η	1	D	0.007	1.24	N/A	-0.59	0.939	0.093			
R2	Η	1+sinθ	D	0.015	1.24	-0.3	-0.59	0.965	0.070			
R3	Н	1+sinθ	Α	0.016	1.25	-0.32	-0.6	0.949	0.087			

M No	f	g	h	α	β ₁	β ₂	β ₃	R ²	Se		
VALLEY Direction											
V1	Η	1	D	0.004	1.37	N/A	-0.61	0.914	0.123		
V2	Η	1+sinθ	D	0.013	1.40	-0.48	-0.63	0.972	0.070		
V3	Η	1+sinθ	Α	0.013	1.38	-0.46	-0.62	0.941	0.091		
RIDGE Direction											
R1	Η	1	D	0.007	1.24	N/A	-0.59	0.939	0.093		
R2	Η	1+sinθ	D	0.015	1.24	-0.3	-0.59	0.965	0.070		
R3	Η	1+sinθ	Α	0.016	1.25	-0.32	-0.6	0.949	0.087		

HYDERABAD

Building on slope *** →

Ambient Vibration Test - Mussoorie vs. IS 1893:2016

- ambient Mussoorie, Uttaranchal.
- The data processed to respective Natural Period.
- Obtained codal provisions.

Validation of derived relations

Sample regression results

$T = \alpha \left(f(H_{avg}) \right)^{\beta_1} \left(g(\theta) \right)^{\beta_2} \left(h(D) \right)^{\beta_3}$ Regression Analysis results (Constant values and Regression

Ramya Gullapalli, Prof. R Pradeep Kumar; Earthquake Engineering Research Centre

R&D SH WCASE 2021 **Technology, Social Impact**

Buildings constructed on hill slopes were tested for their vibrations in

> further was their obtain Fundamental

values were compared with the existing IS $T = \frac{0.09h}{\sqrt{D}}$

Natural period obtained from ambient vibration test observations V/S IS 1893:2016 provisions;

Comparison of Natural period of buildings tested calculated using predicted model's vs. actual experimental value; Along Valley, Ridge directions respectively

 $T = 0.0132 (H_{avg})^{1.4} (1 + sin\theta)^{-0.63} (D)^{-0.48}$ VALLEY direction $T = 0.0156 (H_{avg})^{1.24} (1 + sin\theta)^{-0.59} (D)^{-0.29}$ **RIDGE** direction

