

Local Absorbing Boundary Conditions for Wave Propagation in Viscoelastic Unbounded **Domains**

Introduction

- Absorbing Boundary Condition is one of the very significant aspect of wave propagation problem through unbounded domains.
- Reflections should be minimum when the wave reaches the boundary in order to analyze the system precisely.
- Most of the existing boundary conditions are not accounted for viscoelastic wave propagation.
- Absorbing Boundary Conditions proposed by Lysmer and Kuhlemeyer (1969) are modified to account for adamping ap Bad viscosity in the system.

MATHEMATICAL FORMULATIONS

σ=a.p.Vp.ů + 0.5a.p.Vp.α.u τ =b.p.Vs. \dot{v} + 0.5b.p.Vs. α .v

The artificial boundary condition includes a dashpot with coefficient and a spring with coefficient.

Numerical Results – 1D Wave Propagation

Models	# Elements	Element	
y, Prade	ep Kumar F	Raengho(ne)ri	Е
Case_1	100	10	
Case 2	100	10	
Case 3	500	10	

Conclusions

1) Present Absorbing Boundary Conditions includes the effect of Rayleigh Damping in the unbounded domain and produce very less or negligible reflections.

2) Displacements with current Absorbing Boundary Conditions are in excellent agreement with the extended mesh model.

3) The reflections aggregating at higher damping ratios with increase in the analysis time, therefore not suitable for high damping materials

Ravi Shankar Badry, Pradeep Kumar Ramancharla

R&D SH WCASE 2021 **Technology, Social Impact**

Numerical Results – 2D scalar P-wave propagation

Pressure distribution (N/m2) α = 1: (a) time t=2sec, (b) time t=3sec (c) time t=3.2sec and (d) time t=3.5sec

Numerical Results – 2D wave propagation

pressure distribution (N/m2)when damping coefficient, $\alpha = (N/m^2)$, $\alpha = 10$: (a) time t=1.4 10: (a) time t=0.8 sec, (b) time sec, (b) time t=2.1 sec and (c) t=1.0 sec and (c) time t=1.1 time t=2.5 sec sec

Earthquake Engineering Research Centre

