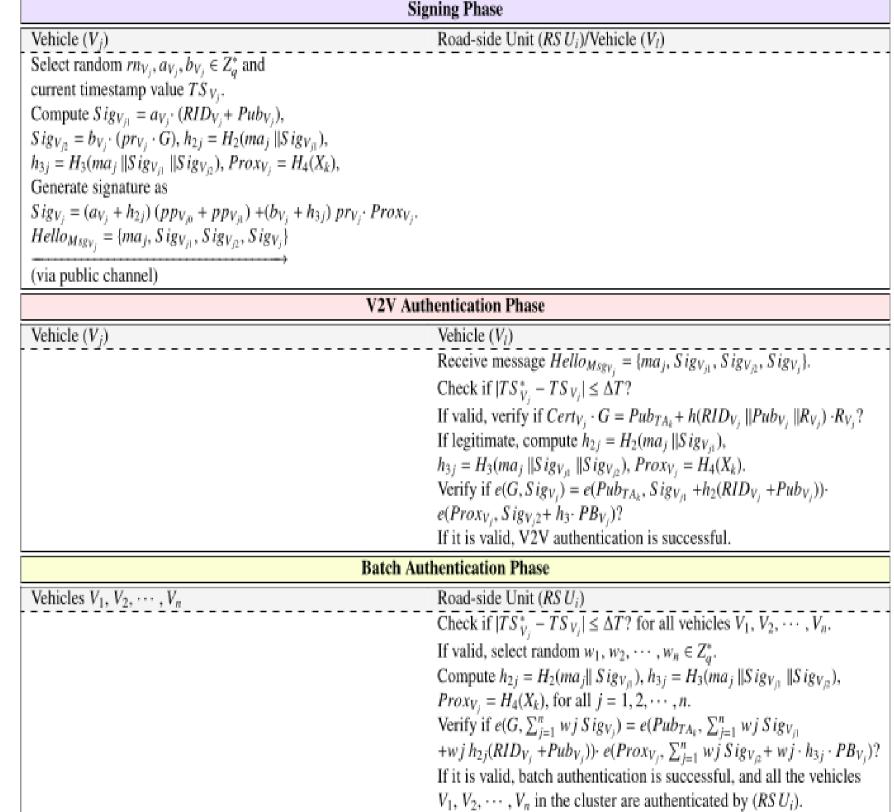


BLOCKCHAIN-BASED BATCH AUTHENTICATION PROTOCOL FOR INTERNET OF VEHICLES

ABSTRACT

The vehicles in Internet of Vehicles (IoV) can be used to gather and distribute data in a smart city environment. However, at the same time various security threats arise due to insecure communication among entities in an IoV-based smart city deployment. To address this issue, we aimed to design a novel blockchain-enabled batch authentication scheme in Artificial Intelligence (AI)- envisioned IoV-based smart city deployment. Incorporation of AI/ML in blockchaining produces a secure, efficient and intelligent blockchain based system. The proposed authentication scheme implements two types of authentications: Vehicle to vehicle (V2V) authentication- that allows a vehicle to authenticate its neighbor vehicles in its cluster; and batch authentication- that allows a group of vehicles to be authenticated by RSU simultaneously. Finally, a group key is established between a group of vehicles and RSU for future secure communication. RSU gathers secure data from its vehicles and form several transactions. Nearby fog servers associated with RSU and cloud server form a complete block. The created blocks are mined by the cloud servers in a Peerto-Peer (P2P) cloud server network through the voting-based Practical Byzantine Fault Tolerance (PBFT) consensus algorithm (Algorithm 1). The authentic and genuine data of the blockchain are utilized for Big data analytics through AI/ML algorithms.

Network Model



Authors: Palak Bagga, Ashok Kumar Das, Anil Kumar Sutrala, and Pandi Vijayakumar. "Blockchain-based batch authentication protocol for Internet of Vehicles," in Journal of Systems Architecture (Elsevier), Vol. 113, pp. 1-23, Article No. 101877, 2021, DOI: 10.1016/j.sysarc.2020.101877. (2019 SCI Impact Factor: 2.552) Research Center Name: Center for Security, Theory and Algorithmic Research

R&D SH WCASE 2021

Signing & Authentication Phases

Group Key Management Phase

Group Key Management Phase	
Vehicles (V _j)	Road-side Unit $(RS U_i)$
	Generate a rn_{RSU_i} , $sk \in Z_q^*$ timestamp value TS_{RSU_i} .
	Compute $RN_{RSU_i} = rn_{RSU_i} \cdot G$.
	Generate group key $GK_k = h(RID_{V_1} RID_{V_2} \cdots RID_{V_n})$
	$ rn_{V_1} rn_{V_2} \cdots rn_{V_n} Cert_{V_1} Cert_{V_2} \cdots$
	$\ Cert_{V_s}\ RID_{RSU_i}\ rn_{RSU_i}\ Cert_{RSU_i}\ pr_{RSU_i}\ sk),$
	Encrypted group key $E_{PB_{V_j}}(GK_k rn_{V_j} TS_{RSU_i})$
	Form message $mb_j = \{TS_{RSU_i}, Cert_{RSU_i}, Pub_{RSU_i}, \}$
	$PB_{RSU_i}, R_{RSU_i}, RN_{RSU_i}, Pub_{TA_k}, rn_{V_j}, E_{PB_{V_j}}(GK_k rn_{V_j} TS_{RSU_i}))$
	signature $Sig_{RSU_i,V_j} = pr_{RSU_i} + h(mb_j RN_{RSU_i} Cert_{V_j} RID_{V_j}$
	$ TS_{V_j} TS_{RSU_j} * rn_{RSU_j} \pmod{q}.$
	$Res_{RSU_i,V_j} = \{mb_j, Sig_{RSU_i,V_j}\}$
Check if $ TS^*_{RSU_i} - TS_{RSU_i} \le \Delta T$?	·
If valid check $Cert_{RSU_i} \cdot G = Pub_{TA_k} + h(RID_{RSU_i})$	
$\ Pub_{RSU_i}) \cdot R_{RSU_i}$?	
Verify the signature by $Sig_{RSU_i,V_j} \cdot G = PB_{RSU_i} + h(mb_j)$	
$ RN_{RSU_i} Cert_{V_j} RID_{V_j} TS_{V_j} TS_{RSU_i}) \cdot RN_{RSU_i}?$	
If valid extract group key by $(GK_k rn'_{V_1} TS'_{RSU_i})$	
$= D_{pr_{V_j}}[E_{PB_{V_j}}(GK_k rn_{V_j} TS_{RSU_j})]$	
Check if $rn'_{V_j} = rn_{V_j}$ and $TS'_{RSU_j} = TS_{RSU_j}$?	
If both are valid, the group key GK_k is authentic.	

Blockchain Consensus Algorithm

Algorithm 1 Consensus for block verification and addition in

olockchain	
nput: A full block, $FullBlock = \{BVer, FallBlock = \{BVer, FallBlock = \{BVer, FallBlock = I, 2, \cdots, n_i\}, Sig_{Block}, CBHask = par_{CS_{a}} \in G\}$ of all other cloud set $f_{CS_{a}}$: number of faulty cloud servers (nod	<i>h</i> }; private-public key pairs (pr_{CS_n} , ervers CS_m in the P2P CS network;
)utput: Commitment for block addition.	
1: L_{CS} generates a random number m_{L_c}	$z_{cs} \in Z_q^*$, a current timestamp $TS_{L_{cs}}$
and a voting request $V \operatorname{Req}_{L_{CS}}$. 2: for each peer cloud server node CS_m	do
 L_{CS} encrypts rn_{L_{cs}}, TS_{L_{cs}} and V Re algorithm with the help of the public 	$a_{I_{CS}}$ using the ECC-based encryption lic key $Pub_{CS_{m}}$ of CS_{m} as $EncVreq =$
	nd sends a block verification request CS_m is Driver request CS_m via open channel.
message {FullBlock, EncVreq, TS _L 4: end for	c_{cs} to CS_{m} via open channel.
 for each follower node C S_m in the P2 Let the message { FullBlock, EncVrd 	
by CS_{m} .	eq, $TS_{L_{cs}}$ } be received at time $TS^*_{L_{cs}}$
 C.S_m checks validity of T.S_{Les} by th if timestamp is valid then 	the condition: $ TS_{L_{CS}}^* - TS_{L_{CS}} \le \Delta T$.
$[rn'_{Low}, TS'_{Low}, VReq'_{Low}] = DP_{P'cs}$	sown private key $pr_{CS_{a}}$ to retrieve [$EncVreq$].
0: if $T^*S'_{Les} = TS_{Les}$ then 1: CS_m verifies MTR_{Block} , Sig FullBlock.	Block and CBHash on the block
 if all the verifications by CS_n 	
	ponse cum block verification sta-
leader L_{CS} , where V_{Rep_C}	$V_{L_{CS}}$, $V Rep_{CS_{-}}$, $V erStat_{CS_{-}}$]} to the S_{-} and $V erStat_{CS_{-}}$ are the voting
respectively.	$Re q'_{L_{cS}}$ and block verification status,
4: end if 5: end if	
6: end if	
 end for Initialize V Count = 0, where V Count r 	represents the number of valid votes.
9: for each voting response cum block v	verification status message { $EP_{Pub_{LCS}}$
$[rn'_{r}, VRe_{Rec}, VerStat_{cc}]$ from the	the follower peer nodes CS_m do its own private key $pr_{L_{CS}}$ to re-
trieve $[rn_{L_{CS}}^*, VRep_{CS_{m}}, VerStat_{CS_{m}}]$	$= DP_{Pr_{L_{CS}}} [EP_{Pub_{L_{CS}}} [m'_{L_{CS}}, VRep_{CS_{a}}],$
VerStat _{CS}]]. 1: if $((rn_{Les}^* = rn_{Les})$ and $(VRep_{CS}^*$	= valid) and (VerStat _{$CS_m = valid$))}
then 2: Set $VCount = VCount + 1$.	
:3: end if	
4: end for 5: if $(VCount \ge 2 * n_{hes} + 1)$ then	
 Add the block FullBlock to the block Broadcast commitment message to 	
8: end if	
Deculto	
Results	
SUMMARY	SUMMARY
	SAFE
SAFE	NAPE
DETAILS	DETAILS
BOUNDED_NUMBER_OF_SESSIONS	BOUNDED_NUMBER_OF_SESSIONS
TYPED MODEL	
	PROTOCOL
PROTOCOL	/home/palak/Desktop/span
T NOTOL OF	
/home/palak/Desktop/span	Aestsuite/results/batch.if
/testsuite/results/batch.if	
GOAL.	GOAL
As specified	as specified
BACKEND	
	OFME
STATISTICS	STATISTICS
Analysed : 844 states	TIME 168 ms
Reachable : 64 states Translation: 0.35 seconds	parseTime 0 ms
	the same service and the second se