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An FPGA Overlay for CNN Inference with Fine-Grained Flexible Parallelism
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e We propose a set of constraints over the degrees of parallelism. The

Figure 1: An overview of our framework. The CPU host processes the tensor flow satisfaction of these constraints ensures that the compute-to-memory overlap
specification and controls the CNN over on the FPGA through a set of control inside our accelerator is maximized during the processing of a layer.
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